## Raman Spectra of Diethyl Aluminum Monohalogenides

## Ву Osamu Yамамото

(Received August 21, 1961)

It has been established that some lower of trialkyl aluminum have the molecular structure of the dimeric bridged form represented by

$$\binom{R}{R}$$
Al $\binom{R}{R}$ Al $\binom{R}{R}$ 

in which the plane containing two terminal alkyl groups and an aluminum atom is perpendicular to the bridge plane<sup>1,2)</sup>. These compounds have been defined as "electron deficient compounds", and according to Rundle3) the bondings between the aluminum and bridging alkyl groups are formed by two "half bonds". Monohalogen derivatives of trialkyl aluminum also exist as dimers, and the following structural formulae can be considered for them.

Formula A with symmetry D<sub>2h</sub> has a halogen bridge which would be formed by the coordination of lone pair electrons in halogen atoms to aluminum. Formula B<sub>1</sub> with symmetry C<sub>2h</sub> corresponds to the "trans" form, in which two halogen atoms are present on opposite sides of the bridge plane, while formula B<sub>2</sub> with symmetry  $C_{2v}$  corresponds to the "cis" form where the halogen atoms are on the same side of the bridge plane. In the latter two, the alkyl bridge would be formed by the half bonds, as in the case of trimethyl aluminum.

There have been several papers reporting on the structure of dimethyl aluminum monohalo-Van der Kelen and Herman<sup>4)</sup> suggested after a study of the Raman spectra, that these compounds would have the structure B<sub>2</sub>, while Growenewege proposed structure A for dimethyl aluminum chloride as a result of

Raman<sup>5)</sup> and proton nuclear magnetic resonance spectroscopy<sup>6</sup>). Electron diffraction study<sup>7</sup>) by Brockway and Davidson also indicated that the compound would have the structure A. Recently Hoffmann<sup>8)</sup> reported Raman and infrared spectral data on some members of trialkyl aluminum and dimethyl and diethyl aluminum chlorides, but his work was mainly concerned with CH deformations and little consideration was given to the structure of the diethyl aluminum monohalogenides.

In this paper, the Raman spectra of diethyl aluminum monohalogenides (except fluoride) as well as of triethyl aluminum have been reached from these spectra as to the structure studied, and some conclusions have been of diethyl aluminum monohalogenides.

## Experimental

Materials.—All the materials except diethyl aluminum chloride were prepared by Gross and Mavity's methods9); diethyl aluminum bromide and iodide were prepared by the reduction of corresponding aluminum sesquihalides with sodium. Diethyl aluminum chloride was provided by the Meguro Laboratory of Mitsui Chemical Industry Co., Ltd. All the samples were distilled into Raman tubes, which were sealed off under reduced pressure to prevent contamination with air and moisture.

Raman Spectra.-The Raman spectra were obtained with a Cary 81 spectrophotometer. Qualitative polarization factor measurements were also made for the purpose of the tentative assignments.

## Results and Discussion

The results are shown in Table I. It can be found from this table that the Raman lines are divided into three groups:  $0\sim700\,\mathrm{cm}^{-1}$ ,  $900\sim$ 1500 cm<sup>-1</sup>, and 2700~3000 cm<sup>-1</sup>, which represent skeletal vibrations, CH deformation vibrations and CH stretching vibrations respectively.

Of these three kinds of vibrations, the CH deformations and stretching vibrations are not so important as far as the molecular structure

<sup>1)</sup> K. W. F. Kohlrausch und J. Wagner, Z. physik. Chem., B52, 185 (1942).

<sup>2)</sup> P. H. Lewis and R. E. Rundle, J. Chem. Phys., 21, 986 (1953).

R. E. Rundle, ibid., 17, 671 (1949).
 C. P. Van der Kelen and M. A. Herman, Bull. soc. chim. Belges, 65, 362 (1956).

<sup>5)</sup> M. P. Growenewege, Z. physik. Chem., [N. F.], 18, 147 (1958).

<sup>6)</sup> M. P. Growenewege, J. Smidt and H. de Vries, J. Am. Chem. Soc., 82, 4425 (1960).

<sup>7)</sup> L. O. Brockway and N. R. Davidson, ibid., 63, 3287

E. G. Hoffmann, Z. Elektrochem., 64, 616 (1960).
 A. V. Gross and J. M. Mavity, J. Org. Chem., 5, 106 (1940).

TABLE I. RAMAN SPECTRA OF TRIETHYL ALUMINUM AND DIETHYL ALUMINUM MONOHALOGENIDES

| $[Al(C_2H_5)_3]_2$   |                  | $[Al(C_2H_5)_2Cl]_2$            |                | $[Al(C_2H_5)_2Br]_2$            |                | $[Al(C_2H_5)_2I]_2$  |                |
|----------------------|------------------|---------------------------------|----------------|---------------------------------|----------------|----------------------|----------------|
| Δν, cm <sup>-1</sup> | $\overline{I}$   | $\Delta \nu$ , cm <sup>-1</sup> | $\overline{I}$ | $\Delta \nu$ , cm <sup>-1</sup> | $\overline{I}$ | Δν, cm <sup>-1</sup> | $\overline{I}$ |
| 119                  | 30 dp            | 114                             | 44 dp          | 95                              | 66 dp          | 81                   | 100 dp         |
| 196                  | sh dp            | 164                             | 3 dp           | 183                             | sh dp          | 170                  | 85 p           |
| 269                  | 91 dp            | 239                             | 27 dp          | 197                             | 100 p          | 202                  | 25 p           |
| 362                  | 18 p             | 263                             | 19 p           | 236                             | 11 dp          | 268                  | 20 p           |
| 430                  | 100 p            | 339                             | 56 p           | 266                             | 26 p           | 321                  | 25 p           |
| 560                  | 66 p             | 480                             | 5 p            | 319                             | 23 p           | 544                  | 100 p          |
| 640                  | 30 dp            | 556                             | 100 p          | 547                             | 100 p          | 664                  | 34 dp          |
|                      |                  | 670                             | 27 dp          | 664                             | 27 dp          |                      |                |
| 922                  | 8 dp             | 922                             | 5 dp           | 921                             | 3 dp           | 921                  | 3 p            |
| 955                  | 12 p             | 957                             | 10 p           | 954                             | 12 p           | 956                  | 8 p            |
| 979                  | 41 dp            | 990                             | 45 dp          | 988                             | 24 dp          | 987                  | 19 dp          |
| 1190                 | 62 p             | 1107                            | 1 p            | 1074                            | 3 p            | 1098                 | 3 p            |
| 1384                 | 1 dp             | 1197                            | 74 p           | 1132                            | 3 p            | 1132                 | 3 p            |
| 1404                 | 19 dp            | 1379                            | 1 dp           | 1190                            | 84 p           | 1189                 | 154 p          |
| 1460                 | 36 dp            | 1406                            | 23 dp          | 1377                            | 2 dp           | 1381                 | 5 dp           |
|                      |                  | 1463                            | 46 dp          | 1402                            | 15 dp          | 1404                 | 11 dp          |
|                      |                  |                                 |                | 1459                            | 25 dp          | 1462                 | 22 dp          |
| 2724                 | 9 p              | 2732                            | 17 p           | 2733                            | 8 p            | 2731                 | 6 p            |
| 2792                 | 18 p             | 2786                            | 14 p           | 2789                            | 22 p           | 2790                 | 24 p           |
| 2827                 | 54 p             | 2870                            | 420 p          | 2866                            | 300 p          | 2867                 | 360 p          |
| 2864                 | 565 p            | 2904                            | 115 dp         | 2900                            | 73 dp          | 2901                 | 33 dp          |
| 2896<br>2938         | 153 dp<br>260 dp | 2943                            | 230 dp         | 2939                            | 160 dp         | 2940                 | 78 dp          |
| 2864<br>2896         | 565 p            | 2904                            | 115 dp         | 2900                            | 73 dp          | 2901                 | 33 dr          |

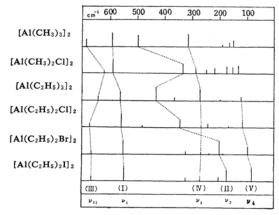



Fig. 1. Schematic representation of Raman spectra in 0~700 cm<sup>-1</sup> region of diethyl aluminum halogenides and related compounds.

is concerned. Furthermore, the CH deformations were discussed in some detail by Hoffmann<sup>8)</sup>, and it appears that there is nothing to be added to his paper. Therefore, the author was interested mainly in the skeletal vibrations and left the CH stretching vibrations to be assigned in the near future.

Tentative assignments for the skeletal vibrations were obtained by comparison with the known spectra of aluminum trihaloge-

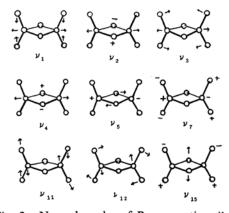



Fig. 2. Normal modes of Raman active vibrations of A<sub>2</sub>B<sub>6</sub> type molecule.  $\nu_1$ , outer stretching;  $\nu_2$ , bridge stretching;  $\nu_3$ , outer bending;  $\nu_4$ , bridge bending;  $\nu_6$ , bridge stretching;  $\nu_7$ , outer wagging;

 $\nu_{11}$ , outer stretching;  $\nu_{12}$ , outer rocking; ν<sub>15</sub>, outer twisting.

nides<sup>10,11)</sup>, trimethyl aluminum<sup>1)</sup>, and dimethyl aluminum chloride5), for which the bridged structure has been firmly established by many authors. The skeletal vibration lines

<sup>10)</sup> R. P. Bell and H. C. Longuest-Higgins, Proc. Roy. Soc., A183, 357 (1945).

11) W. Klemperer, J. Chem. Phys., 24, 353 (1956).

obtained of the compounds in question are schematically drawn in Fig. 1, in which the notation for the frequencies of Bell and Longuet-Higgins<sup>10</sup> is used. The modes of vibrations of  $A_2B_6$  type molecules are reproduced in Fig. 2 only for Raman active vibrations, symmetry species and polarization characters of which are shown in Table II.

TABLE II. SYMMETRY SPECIES AND POLARIZA-TION CHARACTERS OF THE RAMAN ACTIVE NORMAL VIBRATIONS IN Fig. 2

| $\mathbf{D}_{2\mathbf{h}}$ | $A_{1g}$ (p)                    | $\nu_1, \ \nu_2, \ \nu_3, \ \nu_4$ |
|----------------------------|---------------------------------|------------------------------------|
|                            | $\mathbf{B}_{1g}$ (dp)          | $\nu_6, \nu_7$                     |
|                            | $\mathbf{B}_{2\mathbf{g}}$ (dp) | $\nu_{11}, \ \nu_{12}$             |
|                            | $\mathbf{B}_{3g}$ (dp)          | $\nu_{15}$                         |

Seven to eight Raman lines are observed in the region of the skeletal vibrations of the monohalogenides. In the case of the C2h symmetry model, structure B<sub>2</sub>, all of the 18 possible skeletal vibrations are Raman active, while only nine of the vibrations are Raman active for the  $\mathbf{D}_{2h}$  or  $\mathbf{C}_{2h}$  symmetry model. It is probable, therefore, that diethyl aluminum monohalogenide has a  $D_{2h}$  or  $C_{2h}$  symmetry, although this does not appear to be conclusive. Futhermore, in the  $400\sim700$  cm<sup>-1</sup> region of diethly aluminum chloride four infrared absorption bands were observed<sup>8)</sup>, at 673, 628, 544 and 438 cm<sup>-1</sup>, which, except for 673 cm<sup>-1</sup>, do not accord with the Raman lines in Table I. If 673 cm<sup>-1</sup> in the infrared and 670 cm<sup>-1</sup> in the Raman spectra can be assigned to each different vibration, and if it is noted that no other infrared band agrees with any of the Raman lines in frequency, it can be considered that the rule of mutual exclusion holds; this fact assures the presence of the center of symmetry in the molecule. Unfortunately, there is no infrared data on diethyl aluminum monobromide and iodide, but the possibility of C2v symmetry can be eliminated with considerable certainty.

In the Raman spectra of trietyl aluminum and diethyl aluminum monohalogenides the

following two series of strong lines are observed:

| X of $[Al(C_2H_5)_2X]_2$ | Series I cm <sup>-1</sup> | Series II cm <sup>-1</sup> |  |
|--------------------------|---------------------------|----------------------------|--|
| Et                       | 560                       | 430                        |  |
| Cl                       | 556                       | 339                        |  |
| Br                       | 547                       | 197                        |  |
| I                        | 544                       | 170                        |  |

Since both series of lines are polarized, these must be either  $\nu_1$ ,  $\nu_2$ ,  $\nu_3$ , or  $\nu_4$  for  $D_{2h}$  symmetry. Furthermore, it is reasonable to assume that series I and II are assigned to either  $\nu_1$  or  $\nu_2$  by comparison with the assignment of the spectrum of trimethyl aluminum.

Now if the halogen bridge model A with symmetry  $\mathbf{D}_{2h}$  is acceptable, series II must be assigned to  $\nu_2$ , the bridge stretching vibration. because it varies in frequency with the increase in the atomic weight of substituents while series I does not. The frequencies of the bridge stretching vibration,  $\nu_2$ , of aluminum trihalogenides are 340, 204 and 146 cm<sup>-1</sup> for chloride, bromide and iodide respectively, as is shown in Table III, in which the Raman lines in the skeletal regions of trimethyl aluminum, dimethyl aluminum chloride and aluminum trihalogenides are listed with the normal vibrations to which they are assigned. Thus, it can be found that there is a close relationship in  $\nu_2$  between the trihalogenides and diethyl aluminum monohalogenides. When series II is assigned to  $\nu_2$ , series I is naturally assigned to  $\nu_1$ , the outer stretching vibration.

If the halogen bridge model A is assumed, the remaining outer vibrations  $\nu_3$ ,  $\nu_7$ ,  $\nu_{11}$  and  $\nu_{12}$  must not vary in frequency with the increase in the atomic weight of the substituents. Thus, the series III, 640(Et), 670(Cl), 664(Br) and 664(I) cm<sup>-1</sup> is assigned to the outer stretching vibration  $\nu_{11}$  by comparison with methyl compounds and by a consideration of polarization factors. Series IV, 269(Et), 263(Cl), 266(Br) and 268(I) cm<sup>-</sup> may be assigned to the outer bending vibration  $\nu_3$ . The depolarized series V, 119(Et), 114(Cl).

Table III. Raman lines in the region of 0~700 cm<sup>-1</sup> of trimethyl aluminum, dimethyl aluminum chloride and aluminum trihalogenides

|            | $[Al(CH_3)_3]_2^{1)}$ | $[Al(CH_3)_2Cl]_2^{5}$ | $Al_2Cl_6^{10)}$     | $Al_2Cl_6^{11)}$ | $Al_2Br_6^{10)}$ | $Al_2I_6^{10}$     |
|------------|-----------------------|------------------------|----------------------|------------------|------------------|--------------------|
| $\nu_1$    | 590 (10 p)            | 588 (10)               | 606 $(2^{1}/_{2} p)$ | 506              | 491 (3)          | 406 (3)            |
| $\nu_2$    | 452 (8 p)             | 332 (7)                | 340 (10 p)           | 340              | 204 (10)         | 146 (10)           |
| $\nu_3$    | 314 (9 p)             | 286 (4)                | 217 (5 p)            | 217              | 140 (5)          | 94 (6)             |
| $\nu_4$    | 148 (5)               | 131 (6)                | 112 (6 dp ?)         | 112              | 73 (6)           | 53 (6)             |
| $\nu_{11}$ | 682 (5 dp)            | 620 (2)                | 506 (3 p)            | 606              | 407 (2)          | $344 (2^{1}/_{2})$ |
| $\nu_{12}$ | 188 (1)               | 173 (5)                | 164 (3 dp)           | 164              | 112 (3)          |                    |
| $\nu_6$    | 563 (00)              | 247 (3)                | 438 $(1/2 dp ?)$     | 438              | (291 ?)          | (195 ?)            |
| $\nu_7$    | 164 (3)               | 152 (5)                | 284 (2 dp)           | 164              | 176 (2)          |                    |
| $\nu_{15}$ |                       | 217 (4)                |                      | (160)            | _                |                    |

[Vol. 35, No. 4

95(Br), and 81(I) cm<sup>-1</sup> might be  $\nu_4$  by intensity consideration, although  $\nu_4$  has to be a polarized vibration.

So far the assignments have been performed with the halogen bridge model. If the alkyl bridge model, B1 with symmetry C2h (trans form), is adopted, series which does not vary in frequency is the bridge vibration, so that polarized series I should be a bridge vibration. But even in this case triethyl aluminum must belong to the same symmetry class  $D_{2h}$  as trimethyl aluminum, so that, for example, 560 cm<sup>-1</sup> of triethyl aluminum in series I should be assigned to  $\nu_1$ , the outer vibration, by comparison with  $\nu_1$  and  $\nu_2$  of trimethyl aluminum. With the model B, all of the monohalogenides have the alkyl bridge. Then strong lines at approximately 430 cm<sup>-1</sup> should also be observed as the bridge stretching vibration in the spectra of the monohalogenides as in the case of triethyl aluminum. Actually it is not the case, however. Furthermore, it is impossible to

interpret the marked correlation of frequencies between the triethyl aluminum and the diethyl aluminum monohalogenides obtained in Table I.

Accordingly, the results of this study indicate that the Raman spectra of diethyl aluminum chloride, bromide and iodide are consistent with a dimeric bridge structure over the halogen atoms with symmetry  $D_{2h}$ .

The author wishes to express his gratitute to Drs. Yoichiro Mashiko and Kenkichi Nukada of the Government Chemical Industrial Research Institute, Tokyo, for their kind encouragement and valuable suggestions given throughout this study. He is also indebted to Misses Michiko Matsushima and Yuriko Matsubayashi of the same Institute for their help in the measurement of the Raman spectra, and to Mr. Ichiro Endo for his experimental assistance.

Government Chemical Industrial Research Institute, Tokyo Shibuya-ku, Tokyo